
IEEE Transactions oNMIcRowAvE TEEoRYAND Techniques, voL, Mw23, No. 11, NOVEMBBB 1975

A Chebyshev Approximation Method for.,

Microstrip problems

GRAHAM M. L. GLADWELL AND SHIMON COEN, STUDENT MEMBER, IEEE

865

Abstract—The quasi-static TEM mode of a microstrip line may be
obtained approximately from the solution of Laplace% equation

subject to certain boundary conditions. The Green’s function ap-

proach leads to the solution of a Fredholm integral equation tith a
logaii~mic singularity in the kernel. It is shown that if the charge
distribution on the strip is expanded in terms of Chebyshev poly-
no@als then the integrals arising from the logarithmic term may be
evaluated in closed from, and the integral equation may be ap-
proximated closely by a set of algebraic equations. The method is

applied to numerous open and shielded configurations of strips and

couple-strips in the presence of dielectrics. Numerical results are
compared with exact res~ts whenever possible and with results

from previous authors. Design curves are presented for particular

shielded couple-strip configurations.

1, INTRODUCTION

T

HE lowest order quasi-TEM mode of a microstrip line

may be obtained approximately from the solution of

Laplace’s equation subject to certain boundary conditions.

If a Green’s function approach is used the problem may

be reduced to the solution of a Fredholm integral equation

of the first kind, For a single strip occupying the interval

- w/2 < XO < w/2 the equation is

J
w/2

Go(zo,io) uO(&O) @O = fO(xO) , —w/2 g Xo < w/2.
I-w 2

(1)

Here zO,VOare the actual dimensional coordinates; Go(zo,&O)

is the Green’s function; u. (go) is the charge distribution,

and $0 (zo) is the potential on the strip. If ~. (ZO) is constant

and unit y, then the capacitance of “the strip is the total

charge.

For computational purposes it is convenient to intro-

duce dimensionless variables x, ~ given by x = 2x0/w,

& = 2&0/w. It is known that Go(zo,$o) @ have a loga-

rithmic singularity in I ZO — fO I . Thus GO(xo,fo) may be

written

GO(Z,,$,) = n-’nn I *O – &o I + Ho(zo,&o) 1

= vO-l[ln I z – f \ + H(x,&)] (2)

where HO(zO,fO) and H (x,f) are continuous on the strip
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and vo is a function of the geometry and electrical con-

stants. Thus (1) may be written

/

1

G(z,$)u(~) d$ = v.f(z) (3)
-1

where

v = 2vo/w, ~(t) = Uo(io)) f(z) “ jo(zo)

and

G(w,g) = In I z – L I + H(z,&). (4)

Equation (3) will be treated as the standard form of (1).

It is known that the charge distribution uo( lo) will have

a square root singularity at the ends of the strip. This

means that u(g) will have a singularity (of the form
(1 – g2)-1/2.

Numerous methods have been proposed for the solution

of (3). It may be solved by the method of subareas [1]

and the’ method of moments [2]. These methods ignore

the singularity in u(i) at the ends but, nevertheless, yield

acceptable results. Another method, proposed by Silvester

and Benedek [3], uses Gaussian quadrature with weight

(1 – ,$’)-’12 as given by Stroud and Secrest [4] together

with a special CXaussian quadrature for the logarithm.

This method was applied to a single microst rip, but was

valid only for a restricted range of parameters, and led

to a 2-percent capacitance error.

The method proposed in thk paper takes account of

the singularity in u($), deals exactly with the logarithmic

singularity in the kernel, uses only ordirl ary Gauss–

Chebyshev quadrature, is simple and accurate, and can

be applied to any microstrip configuration.

11. CHEBYSHEV POLYNOMIALS

The Chebyshev polynomials T;(x), U~(cc) of the first

and second kinds, respectively, are defined [5] by the

equations

T,(z) = cos io, Vi(z) = [sin (i + 1)0~1/sin 0,

x = Cos e, ~ = (),1,2 . . . (5)

and are polynomials of degree i in x. The firs [bfew are

To(z) = 1 T,(z) = x T2(z) = 22” – 1

Uo(z) = 1 Ul(x) = 2X u,(z) = 4X” – 1.

The following properties will be used: the cwthogonality

condition
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(o, i#j

\ z i=j =() (6)

the special integral

{

1 llnlz–~1 !l’i(f)df= ‘T;(z) ’i’

-/

i#O

T _~ (1–g’l)m _ln2
7 i=O (7)

and the Gauss–Chebyshev quadrature formula

/

1 p(x) n+l (2k – l)7r

-, (1 – X9112=*,;, p(~’)) ‘h=cos 2n+2

(8)

wh~chis exact for polynomials of order 2n + 1 or less.

Equation (6) follows from the definition (5)’ and the

orthogonality of the functions cos id over [O,m]. Equation

(7) can be deduced from the two relations

/

5 T,(t) dt (1 – g’) ‘/’u,-,(&)

_, (1 – ~2)1/2 = – 7
i

and

i#o, lgl<l

(9)

Equation (9) follows immediately from (5), while (10)

is given in [6]; (P) denotes the principal value of the

integral.

III. THE SOLUTION

Write

u(t) = 4(0/(1 — ~z)m (11)

and assume that

where the a~ are coefficients to be determined. Then (7)

shows that

where the asterisk indicates that the first term is a. In 2.

If G(x)&) has the form (4), then (13) gives the first part

of the integral in (3). The second part may be obtained b y

using the Gauw-Chebyshev formula (8). Thus

(15)

This is equivalent to approximating H(x,&) by a poly-

nomial of degree n in & with coefficients that are functions

of x.

Equation (3) now becomes

This equation may be solved approximately by equating

both sides for a number of values of x or equivalently by

employing another Gauss–Chebyshev integration. The

latter yields the equations

where

(19)

Equations (17) and (18) are (n + 1) equations for the

determination of the (n + 1) coefficients ao,al, ”s ● ,a..

The particular case of (3) in which H(x,.$) = O is gov-

erned by Carleman’s formula [7]. This states that

[/
. (P)

I (1 – ~2)1/2 ,

~_t f(t) d-q
‘ j(t) dt

–1 1ln2 _l (1 – t2)l/2,, “

(20)

The integration of j(x) used to derive (17) and (18) from

(16) is equivalent to approximating ~(cc) by the poly-

nomial

f(x) = ~0 + 2 i d$!’.(x). (21)
i=l

In this case, since T(’ (z) = iUi_l(x)

j’(t) = 2 i id,u,-,(t) (22)
‘&lwhich may be approximated by
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so that (10) gives

which is the result obtained from (17) and (1S) when

Cij = o.

IV. IMPLEMENTATION

In practice the solution is carried out in the following

steps.

1) Find the Green’s function for the problem.

2) Scale the variables so that the strip occupies the

region [– 1,1].

3) Separate the logarithmic singularity from the Green’s

function and write it in the form of (2).

4) Choose n and find the coefficients c,i,d~ from (15)

and (19). It has been found that n = 5 is more than ade-

quate in every problem so far attempted.

5) Solve (17) and (18).

The charge distribution is given by

where ~(E) is given by (12). In particular, the total charge,

obtained by integrating u(~) over [— 1, 1] is, by (6) with

j = O, given by ~ao. Notice, therefore, that no extra in-

tegration is needed for the computation of the total charge.

The most difficult part of the analysis is step 3. This

will be discussed in examples below.

V. EXAMPLES

The simplest problem is the microstrip in oacuo, ob-

tained by putting c1 = co in Fig. 1, for which Palmer [8]

obtained an exact solution based on conformal mapping.

Here the scaled Green’s function G(z,&) is [3]

G(@ = in I ~ – $ I – ~ in {(z – $)2+ (4H/W)2} (24)

and v = –4rEo/W in (3).

Table I shows values of the capacitance per unit length

.{,&’”
~ ground plone

Fig. 1. The geometry of the open microstrip.

TABLE I

APPROXIMATE VERSUS EXACT CAPACITANCE PER UNIT

LENGTH OF MICROSTIUP LINE IN VACUO

I I I

WIH
[pF/m] by present method [pF/m] by Palmer

—

N=2 N=4 N= 6 exact

0.0983 12.647 12.647 12,647 12.6S1

0.2120 15.318 “15.318 15.318 15.322

2.3421 41.116 41.056 41.057 41.069

4.3533 61.815 61.269 61.266 61.285

9.591s 126.47 112.53 111.26 111.16

obtained from the present method and fro-m Palmer’s,

and it will be noted that for n = 6 the error is less than

0.1 percent for all values of (W/H). Palmer’s analysis

involves elliptic integrals; an initial step in his analysis

is the choice of a parameter k and the determination of

the ratio W/H corresponding to it: thk accounts for the

particular W/H values chosen in Table I. Palmer’s method

is entirely unsuited to computation; his resu llts take con-

siderably more time to compute and are, in the authors’

opinion, subject to greater error than the values computed

by the present method. The present method also immedi-

ately gives the charge distribution which camnot be de-

duced from Palmer’s results. When applied to the con-

figuration of Fig. 1 with el # e. the method ~vas found to

give results in close agreement with those in [3]. It was

found also that results obtained by using difl’erent values

of n converged rapidly.

Farrar and Adams [9] have considered the shielded

microstrip shown in Fig. 2. For general i3/H the Green’s

function may be obtained in the form of (4) by using the

procedure suggested by Coen [10]. Farrar and Adams

derived the Green’s function for integral B/H; in par-

ticular for B/H = 2 they give the scaled Green’s function

G(z,&) = – ~ ~exp {–rmrla– .$] W/4Hl, m odd
*1

(25)

but incorrectly omit the restriction that m is odd. The

parameter v = – (e. + cI) / W in (3). The series may be

summed explicitly and written in the form

G(z,.$)=lnl z-$1

--ln{lx –&lcoth [~lx–$\W/8H]~ (26)

in which the second term is continuous throughout the

interval. The expression (26), which is apparently new,

is more convenient than (25) for computation. For general

values of B/H, Coen’s method immediately gives G(x,~)

with the logarithmic term separated out, as ~~hown in the

Appendix. The exact capacitance for the configuration

B/H = 2 was obtained by Oberhettinger and Magnus

[11] and as noted by Cohn [12] in the form

C/e.~i = 4K[tanh rW/4H]/K[sech rW]4H] (27)

where K is the complete elliptic integral of the first kind

and

~eff = (G + 1/2) Co, 6, = 61/60.

The results obtained by the present analysis applied to

the kernel (26), n = 4, and W/H = 0.02, 0.2, and 2.0

were found to agree with those obtained from (27) to at

( ------$~’’”””’ P’a”e

[{’7’L“””~o
B X.

H / ,’+jw ,, //: I;<,

- ground plane

Fig. 2. The geometry of the shielded micrcstrip.
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least 5 decimal places; for W/If = 0.2 the two values

agreed to 10 decimal places!

In order to compare the approximate charge distribu-

tions given by (11) and (12) withpreviouslyp ublished

approximate results, the three shielded strips considered

by Mittra and Itoh [13] were computed. In each ease the

graphs were found to be identical to theirs.

Cohn [14] also considered the shielded couple-strip

shown in Fig. 3, and obtained exact results for the im-

pedance for the even and odd modes. The analysis de-

scribed in Section III may easily be extended to this case.

Before the variables XO,LOare scaled, there are two integral

equations which state that the potential at point x, of

either strip is produced by the distributions of charge on

the pair of strips. The equations maybe written

/“ /

b

Go(xo,Eo) a,o(.io) c%, + Go(xo,$o) azo($i) c&o = jio(~o)
-b G

(28)

where j = 1 refers to x, on the left-hand strip; j = 2 refers

to x, on the right hand. These equation are brought to the

required form as follows. For each value of j, in turn, the

m variable is scaled to ruri from — 1 to 1, and the .&ivari-

able in each integral is scaled to run from — 1 to 1 also.

Thus for j = 1,2,20 is written, respectively, in the forms

*O = [(b – a)x’ – (b+ fz)]/2

XO= [(b – a)z” + (b + a)]/2

and the & variables in the two integrals are written

respectively.

.1

tO = [(b – a)? – (b+a)]/2

iO = [(~ – a)i” + (~+ a)l/2
Thus (28) becomes

,1

/ G,,(d,$’)a,(t’) dt’ + / GI,(z’,Y)u,(Y) f%”
J–l J-1

= Vlfl(z’), –1 < z’ <1 (29)

f G21(z’’,t’) UI(F) fi%’ + /1 G22(z’’,&”) u2(L”) W’

–1 –1

. ~2 j2 (2”) , –1 <x” <1 (30)

where vl,v, are constants depending on the geometry.

In (28) for ~ = 1 the kernel GO(ZO,$O)has a logarithmic

singularity, but this needs to be considered only in the

first integral; in the second integral *O lies m strip L to

lies on strip 2 so that x, – EOis never zero. NOW siuce

Z, – & = (b – u) ($’ – t’) /2, the kernel Gll(x’,t’) will

+Y
F—

gfound plone
,—

I

B

1

co
-w- . w+

H
{v%&L”&

s ‘;; y Xo

b %,.

C ground plane

Fig. 3. The geometry of the open couple-strip.

have a singularity in \ x’ – ,$’ I ; G12 (x’,t”) can be treated

as continuous. In the same way, GZZ(z’’,&”) has a siww-
larity in I x“ – ,$” I while G,, (x’’,&’) is continuous. In ad-

dition, if a,,(~) ,u,o(g) have square-root singularities at the

ends of the respective strips, then al (g’) ,UZ(t”) will have

the forms

Thk means that in (29) the first integral maybe calculated

using the procedure outlined in Section 111, while the

second, having a continuous kernel, may be computed by

using ordinary Gauss-Chebyshev quadrature. The result

is 2 (n + 1) equations for the 2 (n + 1) coefficients alijmi.

It maybe verified that for the even mode in which j, (x’) -

1 = ~z(z”) the charge distributions will be related by

w (.Y) = m ( —?’). The coefficients ali,mi will be linked by
the equations ali = (–) %X and (29) and (30) will be

equivalent. There will thus be just (n + 1) equations

for the n + 1 unknown a,i. In the odd mode the corre-

sponding results are

Ul(i’) = —U2(—?) fl($’) = 1 = —fz(~”)

ali = — (–)i@ie (32)

Cohn [14] obtained results for the case in which

B/H = 2. By using conformal mapping he deduced the

even and odd impedances

307r K(k’)
30” ‘~ (33)

‘0” = (6, .,,) 1/’ K(h)
zo” = (,, ,,,)1/2 K(h)

where

‘.=tanh(%)tanhk(%v
‘=’anh(%’)coth[%=?lo ’34)

These results apply to the case in which there are two

dielectrics, e,, e,, and e, # COprovided that e, ,ff is taken to

be e, .ff = (e, + 1)/2, c, = el/60.

The impedances are defined as follows: COOand Coe are

the odd and even capacitances in vacuo; CO,Ce are the odd

and even capacitances with dielectric occupying the lower

part, as in Fig. 3. Then

1 1
zoo = Zoe =

c (Clfc”) 1/2 c(co’c’) 1/2

where c is the velocity of light in vacuo.

Table II shows a comparison between Cohn’s results

and those obtained from the present analysis for one value

of W/B, three of i5’/B. In each case n = 4 was used.

Cohn’s conformal mapping results [14] are limited to

very particular geometries—equal strips and B/H = 2.

The present method can immediately be applied to strips

of unequal, length and B/H # 2; the only proviso is that

the basic Green’s function be known. The above examples
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TABLE II

APPROXIMATE VERSUS EXACT IMPEDANCES FOR TRE SHIELDED

COUPLE-STRIP

I I I I
e

I

0

I

~o

% ‘o go o I

Note: B/H = 2, ., = L

have been test cases to show that the method is versatile

and accurate.

Bryant. and Weiss [15] considered thecoupled stripline

in Fig. 4 and computed the capacitances of various con-

figurations. They were aware that their method was in-

accurate for small W/H (=0. 1) and expected errors less

than 1 percent for large W/H (N2). Table III shows a

comparison of results obtained from the present method

for various values of n. In each case the results have con-

verged by n = 6; for W/H = 0.1 it is clear that n = 2

is sufficient. The table suggests that the expectations of

Bryant and Weiss concerning their errors were correct.

Bryant and Weiss gave graphs of charge distribution but

did not plot dimensionless quantities. Fig. 5 shows the

dimensionless quantity Ha(z) /~OVo plotted against di-

mensionless position. The curves have almost exactly the

same shapes as those in [15]. For the particular case

c1 = eo, H d w, i.e., for two strips in the open in vacuo

Sneddon [16] has given an explicit solution for the charge

density, namely

b
u(x) =

7rK(a/b) [(x2 — a2) (b2 — Z2) ]112

where K is the complete elliptic integral of the first kind.

It is found that as b/a increases more terms are needed in

the expansion to obtain an accurate charge distribution.

“{zzz&z@xO. .–ground plane
“

Fig. 4. The charge distribution of an open ‘couph+strip.

TABLE III

THE EVEN AND ODD CAPACITANCES OF THE OPEN COUPLE-STRIP

1 1

I Capacitance in [pFl~]
I

mode !4/H N=2 N=3 ,, N=5 N=6 Bryant and Weiss

even 2.0 231.602 232.69 232.615 232,611 231.604
—

odd 2.0 37%.7 358.97 355.659 355.494 3s1.494
—

odd o.1- 125.427 12 S.421 125.420 125.420 120.499

ev:ll 0.1 55.510 5s.510 55.510 55. s10 54.512

Note: e, = 10, i!S/H = 0.2. ~

~)
e (J v.”

III200
., =16.O

S/H = 0.3
W/H = 1.0

150
I ‘1i- 000 MODE

Fig. 5. The geometry of the shielded couple-strip.

Thus for b/a = 2, n = 3 gives a charge distribution ac-

curate to 3 digits, while n = 6 gives 7 digits, n = 7 gives 8.

For b/a = 10, n = 7 is required for 3-digit accuracy; for

higher n the equations derived from (29) and (30) were

found to be ill-conditioned. The case b/a = 10 is in any

case outside the range of interest.

VI. THE SHIELDED COUPLE-STRIP

As a final application, the method is used to compute

the even- and odd-charge distributions and impedances

of the shielded couple-strip in Fig. 3 when cl % cO.Fig. 6

shows the impedances as functions of W/H for a number

of values of S/H, and el/eO = 9.6, B/H = 4, It is found

that for i3/H = 8 the even and odd impedances differ
only in the fifth decimal place and have the vahes cor-

responding to S/H -+ m. In this limiting case the geom-

Zo[q

I \ —)

150

t\

‘ L B/H =4
EVEN % s9.6

100 -

S/H=’J2

50 -

‘-&---
Sfn=W/1 —

/
-r. “..

i

... . --, ?

I I 1 1

0 0.5
~

1.0 1.5 W/H

Fig. 6. The vmiat,ion of the even and odd impedances of the
shielded couple-strip with W/H for particular values of S/H.
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etry is that of Fig. 2.

Mittra [17] was also

tribution was found to
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The case considered by Itoh and

computed. Again the charge dis-

be identical to theirs.

APPENDIX

With reference to Fig. 2, the covered-microstrip Green’s

function wjth the separated logarithmic singularity is

from Coen [10]

.6G(z0,go) = in I w – &OI + %H(z0,50)

where

p = –T,()(1 + e,)

H(zo,’$o)

4B’ + (x, – ‘g,)z

= ln {4H’ + (%, – g,) ’]{4(B – H)’+ (x, – .$,)’}

T’T4
+~Cnln~,

n==l

c. =
nll:ln,, (– )~’K”’+n2,

n=nl+~+n3
. . .

1 “– e,
K=—

l+e.

T = {2(B – H)(nl+na) + 2H(1 +n2 +n~)}’

+ {x, –

2(&– H)(l+nl +n~)+2H(l+fi +n~)

+ {223– ,$0}’

2(B – H)(1 +nl+na) +2H(@ +no))2

+ {h – goj

T1 = {2(B – II)(nl + m) +2H(774 + 7L3)}2+ {ZO – &O}2.
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