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A Chebyshev Approximation Methocl for
Microstrip Problems

GRAHAM M. L. GLADWELL anp SHIMON COEN, STUDENT MEMBER, IEEE

Abstract—The quasi-static TEM mode of a microstrip line may be
obtained approximately from the solution of Laplace’s equation
subject to certain boundary conditions. The Green’s function ap-
proach leads to the solution of a Fredholm integral equation with a
logarithmic singularity in the kernel. It is shown that if the charge
distribution on the strip is expanded in terms of Chebyshev poly-
nomials then the integrals arising from the logarithmic term may be
evaluated in closed from, and the integral equation may be ap-
proximated closely by a set of algebraic equations. The method is
applied to numerous open and shielded configurations of strips and
couple-strips in the presence of dielectrics. Numerical results are
compared with exact results whenever possible and with results
from previous authors. Desxgn curves are presented for particular
shielded couple-strip configurations.

I. INTRODUCTION

HE lowest order quasi-TEM mode of a microstrip line
L may be obtained approximately from the solution of
Laplace’s equation subject to certain boundary conditions.
If a Green’s function approach is used the problem may
be reduced to the solution of a Fredholm integral equation
of the first kind. For a single strip occupying the interval
—w/2 < xy < w/2 the equation is
w /2

Go(o,£0) a0 (&) déo

—w/2

= fo(@), —w/2 < 2 < w/2.

(1)

Here 7, are the actual dimensional coordinates; Go(xo, &)
is the Green’s function; oy(%) is the charge distribution,
and fo(x,) is the potential on the strip. If fo(x,) is constant
and unity, then the capacitance of the strip is the total
charge.

For computational purposes it is convenient to intro-
duce dimensionless variables z, ¢ given by z = 2x,/w,

= 2&/w. It is known that Gy(zo,é) will have a loga-
rithmic singularity In | 2o — & | . Thus Go(x,&) may be
written

Go(2o,80) = vo '[In | 2o — & | + Ho(xo,80) ]
=y [In|z—¢|+ H(z$)] (2)

where Ho(2o,%) and H(z,£) are continuous on the strip
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and », is a function of the geometry and electrical con-
stants. Thus (1) may be written

1
[ @@po) d = i) (3)
where
vV = 21/0/11), ”(E) = UO(EO); f(fb') == fo(xo)
and
G(z,t) =In|e— ¢]| + H(x,8). (4)

Equation (3) will be treated as the standard form of (1).
It is known that the charge distribution ¢o(%) will have
a square root singularity at the ends of the strip. This
means that ¢(&) will have a singularity of the form
(1 — g&)-1e, ‘

Numerous methods have been proposed for the solution
of (3). It may be solved by the method of subareas [1]
and the method of moments [2]. These methods ignore
the singularity in o(£) at the ends but, nevertheless, yield
acceptable results. Another method, proposed by Silvester
and Benedek [37, uses Gaussian quadrature with weight
(1 — £)712 ag given by Stroud and Secrest [4] together
with a special Gaussian quadrature for the logarithm.
This method was applied to a single microstrip, but was
valid only for a restricted range of parameters, and led
to a 2-percent capacitance error.

The method proposed in this paper takes account of
the singularity in ¢(£), deals exactly with the logarithmic
singularity in the kernel, uses only ordinary Gauss—
Chebyshev quadrature, is simple and accurate, and can
be applied to any microstrip eonfiguration.

II. CHEBYSHEV POLYNOMIALS

The Chebyshev polynomials T;(x), U;(z) of the first
and second kinds, respectively, are defined [5] by the
equations

T:(x) = cos 9, U;(x) = [sin (¢ 4+ 1)87|/sin 6,
x = cos f, 2 =012 (5)
and are polynomials of degree ¢ in @. The first few are
To() =1 Ti(z) = z To(z) =222 —1
Us(x) =1 Ui(x) =22 U:(z) = 422 — 1.

The following properties will be used: the orthogonahty
condition



866
0, i
21 Ti(x)T;(x) da .
-] =41 =7#0
r/;l (1 — a2 v
2, i=j=0  (6)
the special integral
lf”ﬂx~suw9@_ ~Ti@/fi i 0
mla (L@ —In2, i=0 (7)
and the Gauss—Chebyshev quadrature formula
1 n41
p(z) _@k— D
Lmy—mm n+l§pm% T O T ¥ 2
(8)

which is exact for polynomisls of order 2n + 1 or less.

Equation (6) follows from the definition (5) and the
orthogonality of the functions cos 76 over [0,7]. Equation
(7) can be deduced from the two relations

/f T.(¢) dt (1 — &)U (8)

L A= i ,  1#0[E<1
(9
and
1 — )10, ,(8) d
(P)/ ( Eg_xl(i) £ _ —aTi(2),
—1

i=0, |z <1. (10)

Equation (9) follows immediately from (5), while (10)
is given in [6]; (P) denotes the prlnClpal value of the
integral.
III. THE SOLUTION
Write

o(§) =¢(&)/(1 — )" (11)

and assume that

v = S aT.(®)

=0

(12)

where the a; are coefficients to be determined. Then (7)
shows that

'In|z—¢] " ,
-/-_1 (1 — g)ue () dt EO a:T(x) /3

where the asterisk indicates that the first term is apIn 2.
If G(x,£) has the form (4), then (13) gives the first part
of the integral in (3). The second part may be obtained by
using the Gauss—Chebyshev formula (8). Thus

T;
]H@m@ﬂ_; /E%%%ﬁ

which may be approximated by

(13)
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[ oo de~rSabe 00
7=0
where
1 n+1
bi(x) = Tl :4:4 H(z,6) Ti(&),
2k — U=
& = cos [m] . (15)

This is equivalent to approximating H(x,&) by a poly-
nomial of degree n in ¢ with coefficients that are functions
of .

Equation (3) now becomes

e S aT(@) )i+ 7 5 abi(@) = v(a).

=0 =0

(16)

This equation may be solved approximately by equating
both sides for a number of values of z or equivalently by
employing another Gauss—Chebyshev integration. The
latter yields the equations

—maoIn 2 + 7 2 cija; = vy, =0 10
Fo=0
—7@./2% + 7Y Ciyt; = vdy, 2= 1,2,---,n (18)
=0
where
n+1
Cij = n+ 1 El T (@) bj(wx)
1 n+41
di = T 1
1 = D). (19)

Equations (17) and (18) are (n 4 1) equations for the
determination of the (n + 1) coefficients ag,ay, * *,a..

The particular case of (3) in which H(z,£) = 0 is gov-
erned by Carleman’s formula [77]. This states that

w9=§

[(P)/ (l—tz)lzf’(t)d 1 Lof@) de ]

(1 =y
(20) -

The integration of f(x) used to derive (17) and (18) from
(16) is equivalent to approximating f(x) by the poly-
nomial

ﬂ@=%+2i@ﬂw. (21)
In this case, since T/ (z) = U1 ()
P =23 i) 22)

=1
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so that (10) gives

W(E) = — (/7 (25 3dT4(E) + do/In 2)

i=1

(23)

which is the result obtained from (17) and (18) when
Ciy; = 0.

IV. IMPLEMENTATION

In practice the solution is carried out in the following
steps.

1) Find the Green’s function for the problem.

2) Scale the variables so that the strip occupies the
region [—1,17].

3) Separate the logarithmie singularity from the Green’s
funection and write it in the form of (2).

4) Choose » and find the coeficients ¢,;,d; from (15)
and (19). It has been found that » = 5 is more than ade-
quate in every problem so far attempted.

5) Solve (17) and (18).

The charge distribution is given by

o(8) = ¥(&)/(1 — &1 .
where ¢ (£) is given by (12). In particular, the total charge,
obtained by integrating o(£) over [—1,1] is, by (6) with
7 = 0, given by =wa,. Notice, therefore, that no extra in-
tegration is needed for the computation of the total charge.

The most difficult part of the analysis is step 3. This
will be discussed in examples below.

V. EXAMPLES

The simplest problem is the microstrip n vacuo, ob-
tained by putting ¢ = ¢ in Fig. 1, for which Palmer [8]
obtained an exact solution based on conformal mapping.
Here the scaled Green’s function G(«,¢) is [3]

Gf) =ln|z—&| — i {(z— O+ 4H/ W)}

and v = —4we/W in (3).
Table I shows values of the capacitance per unit length

(24)

y

I«
Xo
rava
H{,/ S 7[ w /‘/'/// 1,7
L ground plane

Fig. 1. 'The geometry of the open microstrip.

TABLE 1

ArrroxiMATE VERsUs Exacr Caracitance pER UNir
LeneTH OF MICROSTRIP LINE IN VACUO

WH [pF/m] by present method [pF/m] by Palmer
N=2 N=4 N=6 exact
0.0983 12.647 12.647 12,647 12.651
0.2120 15.318 | "15.318 15.318 15.322
2.3421 41.116 | 41.056| 41.057 41.069
4,3533 61.815 61.269 61.266 61,285
9.5815 126.47 112.53 111.26 111.16
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obtained from the present method and from Palmer’s,
and it will be noted that for n = 6 the error is less than
0.1 percent for all values of (W/H). Palmer’s analysis
involves elliptic integrals; an initial step in his analysis
is the choice of a parameter k and the determination of
the ratio W/H corresponding to it: this acecunts for the
particular W/H values chosen in Table I. Palmer’s method
is entirely unsuited to computation; his results take con-
siderably more time to compute and are, in the authors’
opinion, subject to greater error than the values computed
by the present method. The present method also immedi-
ately gives the charge distribution which cannot be de-
duced from Palmer’s results. When applied to the con-
figuration of Fig. 1 with ¢ # ¢ the method was found to
give results in close agreement with those in [37]. It was
found also that results obtained by using different values
of n converged rapidly.

Farrar and Adams [9] have considered the shielded
microstrip shown in Fig. 2. For general B/H the Green’s
function may be obtained in the form of (4) by using the
procedure suggested by Coen [10]. Farrar and Adams
derived the Green’s function for integral B/H; in par-
ticular for B/H = 2 they give the scaled Green’s function

G(z,8) = — i%exp{—mw]x—E]WﬂiH}, m odd
m=1

(25)

but incorrectly omit the restriction that m is odd. The
parameter v = — (& -+ &) /W in (3). The series may be
summed explicitly and written in the form

—In{|z—&|coth{x|z— £]|W/8H]} (26)

in which the second term is continuous throughout the
interval. The expression (26), which is apparently new,
is more convenient than (25) for computation. For general
values of B/H, Coen’s method immediately gives G(x,§)
with the logarithmic term separated out, as shown in the
Appendix. The exact capacitance for the configuration
B/H = 2 was obtained by Oberhettinger and Magnus

[11] and as noted by Cohn [127] in the form
C/eets = 4K[tanh #W/4H}/K[sech =W /4H] (27)

where K is the complete elliptic integral of the first kind
and

€eff — (er + 1/2)507

The resuits obtained by the present analysis applied to
the kernel (26), n = 4, and W/H = 0.02, 0.2, and 2.0
were found to agree with those obtained from (27) to at

€ = 61/60‘

§—— ground plane

€0

B X
H{/ ’, ?ZW/,E /elr/’ °

*___ ground plane

Fig. 2. The geometry of the shielded mjercstrip.
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least 5 decimal places; for W/H = 0.2 the two values
agreed to 10 decimal places!

In order to compare the approximate charge distribu-
tions given by (11) and (12) with previously published
approximate results, the three shielded strips considered
by Mittra and Itoh [137] were computed. In each case the
graphs were found to be identical to theirs.

Cohn [14] also considered the shielded couple-strip
shown in Fig. 3, and obtained exact results for the im-
pedance for the even and odd modes. The analysis de-
scribed in Section III may easily be extended to this case.
Before the variables 2o, are scaled, there are two integral
equations which state that the potential at point z, of
either strip is produced by the distributions of charge on
the pair of strips. The equations may be written

—a b
/ Go(wo,éo)o'm(’éo) d&) -+ / Go(xo;fo)@o(fo) dfo = fjo(l'o)
—~b a

(28)

where 7 = 1 refers to xo on the left-hand strip; j = 2 refers
to zo on the right hand. These equation are brought to the
required form as follows. For each value of 7, in turn, the
2o variable is scaled to run from —1 to 1, and the & vari-
able in each integral is scaled to run from —1 to 1 also.
Thus for § = 1,2,% is written, respectively, in the forms

r=[0b—a)a — (b+a)l/2
2 =[0—a)2"+ (b+a)]/2
and the &, variables in the two integrals are written
bo=[(b—a)f — (b+a)l/2
L=[0—-0a)"+ (b+a)l/2
respectively. Thus (28) becomes

1 1
/ VGu(-’C',E') o (¢) d¢’ + f Gre( F") o (E') dE”
-1 —1

= V1f1(illl), —l1<a <1 (29)

1 1
[ en 810 & + [ Gala" ) onle”) ae”
—1 —1

= w foala'), —1<z’"<1 (30)

where »1,7; are constants depending on the geometry.

In (28) for ; = 1 the kernel Gy(zo,&) bas a logarithmie
singularity, but this needs to be considered only in the
first integral; in the second integral x, lies on strip 1, &
lies on strip 2 so that z; — % is never zero. Now since
Zo — £ = (b — a)(z’ — &) /2, the kernel Gu(z',t) wil

y F— ground plane

B W W ‘o
= Xo

> = 7
H{ b 29¢ 1 €,

_ ground plane

Fig. 3. The geometry of the open couple-strip.
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have a.singularity In { 2’ — £ | ; G(2',£) can be treated
as continuous. In the same way, G2 (z”,£"’) has a singu-
larity In | 2" — £’ | while Gu(2”,¢’) is continuous. In ad-
dition, if e10(£),00(%) have square-root singularities at the
ends of the respective strips, then ¢1(£'),02(¢”) will have
the forms

N - a:;T1 () oo (£ = > aTs(E)
&) =R g eym O T E g Y

This means that in (29) the first integral may be calculated
using the procedure outlined in Section III, while the
second, having a continuous kernel, may be computed by
using ordinary Gauss—Chebyshev quadrature. The result
is 2(n + 1) equations for the 2(n + 1) coefficients as,az:.
It may be verified that for the even mode in which fi(2') =
1 = fo(z”) the charge distributions will be related by
1) = aa(—E"). The coefficients a1;,a,; will be linked by
the equations a;; = (— ), and (29) and (30) will be
equivalent. There will thus be just (n 4 1) equations
for the n + 1 unknown ay;. In the odd mode the corre-
sponding results are

ai(f) = —e(—¢) A@) =1=—f(")
1 = —(—)"Grzi- (32)

Cobn [14] obtained results for the case in which
B/H = 2. By using conformal mapping he deduced the
even and odd impedances x

_30r K(k) . 30n K(k)
B (fr eff)llzK(ke) . (er eff)ll2 K(kﬂ)

Zy® (33)

where

w

k, = tanh (2 j—:—) tanh [g (W; S)]
k, = tanh (7.2" BK> coth [g (W;_ S)] . (34)

These results apply to the case in which there are two
dielectrics, e, e, and e 7 e provided that e ¢ is taken to
be erett = (& + 1)/2, & = &1/e0

The impedances are defined as follows: Co° and C¢® are
the odd and even capacitances in vacuo; C°,C¢ are the odd
and even capacitances with dielectric occupying the lower
part, as in Fig. 3. Then

1 1
T o(CeCo) i T e(CCe)

Zy°

where ¢ is the velocity of light in vacuo.

Table II shows a comparison between Cohn’s results
and those obtained from the present analysis for one value
of W/B, three of S/B. In each case n = 4 was used.

Cohn’s conformal mapping results [14] are limited to
very particular geometries—equal strips and B/H = 2.
The present method can immediately be applied to strips
of unequal length and B/H = 2; the only proviso is that
the basic Green’s function be known. The above examples
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TABLE II

ArproxiMaTE VERsUs Exacr IMPEDANCES FOR THE SHIELDED
CourLE-STRIP

e e o 0
% % % %
W/B | S/B| exact | approx exact approx
1 2.0 65.373 | 65.33 65.319 65.28
1 1.0] 65.962 | 65.92 64.715 64.67
I I
T
1 |0.2]72,155 | 72.10 | 55.934 | 55.88
i

Note: B/H = 2, ¢, = 1.,

have been test cases to show that the method is versatile
and accurate.

Bryant. and Weiss [15] considered the coupled stripline
in Fig. 4 and computed the capacitances of various con-
figurations. They were aware that their method was in-
accurate for small W/H (~0.1) and expected errors less
than 1 percent for large W/H (~~22). Table III shows a
comparison of results obtained from the present method
for various values of %. In each case the results have con-
verged by n = 6; for W/H = 0.1 it is clear that n = 2
is sufficient. The table suggests that the expectations of
Bryant and Weiss concerning their errors were correct.
Bryant and Weiss gave graphs of charge distribution but
did not plot dimensionless quantities. Fig. 5 shows the
dimensionless quantity Ho(x)/eVy plotted against di-
mensionless position. The curves have almost exactly the
same shapes as those in [15]. For the particular case
a = &, H— o, ie., for two strips in the open in vacuo
Sneddon [167] has given an explicit solution for the charge
density, namely

b
7K (a/b)[(a* — a*) (b* — a?)
where K is the complete elliptic integral of the first kind.

It is found that as b/a increases more terms are needed in
the expansion to obtain an accurate charge distribution.

o{x) =

¥
e e

H{ ]/57/ ’/’//,‘l/,
o,

L ground plane

Xo

b

-

Fig. 4. The charge distribution of an open ‘couple-strip.

TABLE III
Tee EveN anD Opp CapacitaNceEs oF THE Open CoupLE-StrIP
Capacitance in [pF/m}
mode | W/H N=2 N=3 , N=5 N=6 Bryant and Weiss
even 2.0 231.602 232.69 232,615 232,611 231.604
odd -| 2,0 |378.7 358.97 | 355.639 | 355.494 351.494
odd | 0.1 |[125.427 | 125,421 125.420 | 125.420 120.499
even [0.1 | s5.510 | 55.510| 55.510 | 55.510 54,512

Note: e, = 10, S/H = 0.2.
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€o Vo WoaSeo X
€ = 160
S/H= 03
W/H = IO
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100 !
|
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| |

! EVEN MODE l

i | l - X
0o 0I3 0.5 10 LS

W+

Fig. 5. The geometry of the shielded couple-strip.

Thus for b/a = 2, n = 3 gives a charge distribution ac-
curate to 3 digits, while n = 6 gives 7 digits, n = 7 gives 8.
For b/a = 10, n = 7 is required for 3-digit accuracy; for
higher n the equations derived from (29) and (30) were
found to be ill-conditioned. The case b/a = 10 is in any
case outside the range of interest.

V1. THE SHIELDED COUPLE-STRIP

As a final application, the method is used to compute
the even- and odd-charge distributions and impedances
of the shielded couple-strip in Fig. 3 when & # €. Fig. 6
shows the impedances as funetions of W/H for a number
of values of S/H, and e/ey = 9.6, B/H = 4. It is found
that for S/H = 8 the even and odd impedances differ
only in the fifth decimal place and have the values cor-
responding to S/H — . In this limiting case the geom-

20[8]

150

50

0 0.5 [Xo) 15 2.0 W/H

Fig. 6. The variation of the even and odd impedances of the
shielded couple-strip with W/H for particular values of S/H.
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etry is that of Fig. 2. The case considered by Itoh and
Mittra [17] was also computed. Again the charge dis-
tribution was found to be identical to theirs.

APPENDIX

With reference to Fig. 2, the covered-microstrip Green’s
function with the separated logarithmic singularity is
from Coen [107]

BG (%0,60) = In l 20— & | + 3H (x0,4)

where
B = —we(l + ¢)
H (x0,&)
- 11’1 4:B2 + (.To —_ 20)2
{402 + (20 — £)2}H{4(B — H)* + (20 — &)?%
* T.T,
+ El C.1ln .
n!
Co = ———— (=)"K™4, = g+ np 4 g
Ny !Malng!
1— €
K= 1+e
= {2(B — H) (m + n3) + 2H(1 4 ny + ns) }2
+ {il?o - 350}2
+ {ro — &}?
Ts = {2(B — H)(1 + m + ng) + 2H (ny + ns) }2 _
+ {xo - 50}2
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Ty = {2(B ~ H) (m + 1) +2H (3 + na) 1> + {70 — bo}™
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